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The spatiotemporal oscillations of the Min proteins in the bacterium Escherichia coli play an important role
in cell division. A number of different models have been proposed to explain the dynamics from the underlying
biochemistry. Here, we extend a previously described discrete polymer model from a deterministic to a
stochastic formulation. We express the stochastic evolution of the oscillatory system as a map from the
probability distribution of maximum polymer length in one period of the oscillation to the probability distri-
bution of maximum polymer length half a period later and solve for the fixed point of the map with a combined
analytical and numerical technique. This solution gives a theoretical prediction of the distributions of both
lengths of the polar MinD zones and periods of oscillations—both of which are experimentally measurable.
The model provides an interesting example of a stochastic hybrid system that is, in some limits, analytically
tractable.
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I. INTRODUCTION

The bacterium E. coli is a rod-shaped cell that undergoes
a rapid division cycle which culminates with fission at the
midpoint of the cell. The precise location of the division site
is controlled by two independent pathways. Nucleoid occlu-
sion �1� prevents division at sites in close proximity to the
chromosomes. After chromosome segregation, putative divi-
sion sites include the midcell region and the cell poles. The
polar sites are suppressed by the Min proteins, MinC, MinD,
and MinE.

MinD is an ATPase that, in its ATP-bound form, binds to
the inner cell membrane �2�. MinE activates the ATPase ac-
tivity of membrane-bound MinD, removing MinD from the
membrane �3�. MinC colocalizes with membrane-bound
MinD �4� and prevents the assembly of the FtsZ ring, one of
the fundamental parts of the division apparatus �5�. Fluores-
cent labeling of MinD showed a pole-to-pole alternating
membrane association �6�. This oscillatory localization is
thought to be the result of the membrane-dependent interac-
tion of MinD and MinE �for a review see �7��. The still-
uncertain mechanism by which this spatiotemporal oscilla-
tion occurs is the motivation for our work.

The interaction of MinD and MinE in the presence of ATP
and lipid membranes has been studied in vitro and MinD was
found to accumulate into polymers and fiber bundles above
certain concentrations �8,9�. In vivo, the fluorescently labeled
Min proteins appear to be organized into helical structures on
the inner wall of the cell membrane �10,11�. Considered to-
gether, the in vitro and in vivo observations suggest that the
Min proteins organize in the form of polymers in the cell, an

assumption on which we base our theoretical model.
The spatiotemporal oscillations of the Min proteins in E.

coli have inspired much theoretical work �see �7� for a recent
review�. Whereas many of the proposed models �12–19� de-
scribe the oscillations as a self-organized emergent property
of a reaction-diffusion system, only a few �20–23� address
the polymer nature of the relevant proteins. Cytrynbaum and
Marshall �22� described the oscillatory dynamics of the Min
proteins solely in terms of simple polymer assembly and
disassembly coupled with concentration-dependent condi-
tions for switching between these two states. Much of the
experimentally observed behavior of wild-type cells can be
explained within this framework as can a number of mutant-
study observations. Here we analyze a stochastic version of
the model introduced in �22� and build a set of quantitative
predictions that can be used to evaluate the model against
data and results of other models.

Our stochastic model consists of a set of four interacting
linear polymers, a pair of MinD and MinE polymers at either
pole of the cell, each of which can be in either a growing or
a shrinking state. For any fixed combination of states for the
four polymers, the dynamics are deterministic and described
by a system of ordinary differential equations for the lengths
of the polymers. The full state of the system is thus deter-
mined by four discrete state variables �growing/shrinking/not
nucleated� and four continuous variables �polymer lengths�.
Stochastic transitions between the discrete states are depen-
dent on the cytoplasmic concentrations of the Min proteins
and so implicitly on the polymer lengths.

Cytrynbaum and Marshall �22� analyzed a deterministic
limit of the model with infinitely high cooperativity, the so-
lutions of which can be expressed easily in the form of fixed
points of a one-dimensional map which we describe in the
first subsection of Sec. III. Formulating the model in this
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deterministic limit as a map is useful in understanding our
approach to the full stochastic model which we focus on
throughout the rest of Sec. III. As with the deterministic
model, the stochastic model can be reduced to a map, in this
case one that takes the probability distribution for the maxi-
mum polymer length during a given period of the oscillation
to the probability distribution for the same quantity half a
period later. Our results include analysis of this probability
distribution map and the calculation of its fixed point. In
addition, from the analytical theory and numerical simula-
tions, we calculate the distributions of other properties that
are easily measured experimentally. This enables us to nar-
row down the parameter regime in which the results of our
model agree with experimental observations. In particular, a
high cooperativity �n�6� in the nucleation of the MinE
polymer is required. The cooperativity in nucleation of the
MinD polymer turns out to be less crucial �n�3 is suffi-
cient�. Also, over a wide range of parameter values, two
stable solutions exist, one in which the Min proteins are en-
tirely in the cytosol and one in which polymers form at either
pole in an oscillatory manner. Stochastic transitions between
these bistable states are more or less likely depending on
parameter values. In the discussion, we put this finding into
the context of recent experimental observations �24�, and
compare our results to other modeling studies in the litera-
ture.

II. MODEL—A HYBRID DYNAMICAL SYSTEM

In this section, we briefly restate and summarize the
model introduced in �22�. For a discussion of the underlying
assumptions and hypotheses we refer to the extensive de-
scription in �22�. We assume that both MinD and MinE ag-
gregate in the form of polymers on the inner side of the cell’s
membrane. The Min oscillations results from the coupled
dynamics of two MinD and two MinE polymers, one pair on
each side of the cell.

In our model, MinD monomers �36� from the cytosol can
start a polymer �i.e., nucleate� at one of the nucleation sites
that are assumed to be positioned at each pole of the cell, an
idea supported by recent experiments �25–27�. The probabil-
ity of nucleation on an empty site is proportional to the cy-
tosolic MinD concentration raised to the power nnuc. We as-
sume that each nucleation site, when occupied by a polymer,
is incapable of nucleating a second polymer �see �22� for a
discussion�. The MinD polymer then elongates towards mid-
cell at a rate proportional to the cytosolic MinD concentra-
tion. As a further assumption, a MinE polymer can nucleate
at the growing tip of the MinD polymer with a probability
proportional to the cytosolic MinE concentration raised to
the power ncap. It then grows backwards on top of the MinD
polymer with a rate proportional to the MinE concentration
�37�. By inducing hydrolysis, the MinE subunits destabilize
the underlying MinD subunits which disassemble from the
tip, releasing both types of subunits into the cytosol.

The geometry of our model cell is that of a cylinder with
fixed length L and diameter 2r. Reported diffusion coeffi-
cients for the Min proteins are around 10 �m2 s−1 �28� so in
a cell of length 2–3 �m and with characteristic reaction

times on the order of seconds, the cytosolic concentrations of
MinD and MinE are essentially uniform throughout the cell.
We verified numerically that including diffusion along the
long axis does not qualitatively change our findings. The
time scale of ADP-ATP exchange in cytosolic MinD is as-
sumed to be fast compared to the oscillatory dynamics �22�.

The equations governing the dynamics of the polymers
are distinct for the different discrete states between which the
system jumps. The system describing the behavior therefore
is a hybrid dynamical system—a combination of continuous
and discrete dynamics �29�. In our case, the continuous vari-
ables are four polymer-lengths ll/r

D and ll/r
E whose dynamics

are determined by the values of the respective discrete state
variables Sl/r

D and Sl/r
E .

A. Polymer dynamics

For each of the four polymers �two MinD, two MinE�, we
track their projections onto the long axis �x� of the cell �Fig.
1�. The four variables ll

D, ll
E, lr

D and lr
E describe these pro-

jected lengths for the polymers attached to the left and right
pole of the cell, respectively. The relation between the full
arc length of a helical polymer and its projection is given by
l /cos �, where � is the pitch of the helix. The parameter �
=d cos � is used to convert between the projected length l of
a polymer and the number of monomers it is made of �with
monomer size d�. The growth and shrinkage of the polymers
is described by a simple ordinary differential equation,

d

dt
lj
i = �ki�Sj

i�, j � �l,r�, i � �D,E� , �1�

whose right hand side is determined by the value of the dis-
crete state variables Sj

i �each case �i , j� is described below�.
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FIG. 1. �Color online� A section of the regular oscillation pattern
with stochastic switching to explain our notation. The solid lines
indicate the temporal dynamics of the medial end of the D-polymers
and the dotted lines show the position of the tip of the E-polymers
that is closer to the respective cell pole. The shaded areas represent
the value of the discrete state variables Sl/r

D �inner� and Sl/r
E �outer�.

We use capital T for time differences and little t for time points.
Even indices refer to the polymer anchored at the right pole of the
cell and odd indices refer to the one anchored at the left pole. The
right panel shows a snapshot of the oscillation �dash-dotted line in
the left panel� in the geometry of the cell �top helix: MinD, bottom
helix: MinDE�.

PETER BOROWSKI AND ERIC N. CYTRYNBAUM PHYSICAL REVIEW E 80, 041916 �2009�

041916-2



The cytosolic concentrations cD and cE are determined by
conservation of monomers,

�

�V
�ll

i + lr
i� + ci = ci,to, �2�

where V=�r2L is the volume of the cell �in �m3�, �
� 1

602 �M �m3 converts between particles per �m3 and
�M, and ci,to is the total concentration of MinD/MinE mono-
mers, respectively.

1. MinD

MinD polymerization can start at either of two nucleation
sites located at the two poles of the cell, i.e., at the positions
x=0 and x=L. We assume that one end of the MinD poly-
mers is fixed to one of these stationary nucleation sites,
whereas at the other end �the “tip”�, the polymer can elon-
gate or shorten. In Eq. �1�, kD�Sj

D� represents either constant
disassembly or first order assembly taking the following val-
ues depending on the discrete state variable Sj

D of the poly-
mer in question �j� �l ,r��:

kD�Sj
D� = �kon

D cD if Sj
D = 1 �D-polymer growing�

− koff if Sj
D = 0 �D-polymer shrinking�

0 if Sj
D = − 1 �no D-polymer� .

	
�3�

The dynamics of switching for the discrete state variables
Sl/r

D , between the three states −1, 0 and 1, will be explained in
the next subsection.

The largest possible extension of a D-polymer is reached
when all MinD is bound in one polymer. This is the case at
�38�

lmax =
�V

�
cD,to. �4�

2. MinE

We assume that the MinE polymer nucleates on the non-
polar �medial� end of the MinD polymer and grows on top of
it towards the pole �Fig. 1�. Since we assume that MinE
monomers bind to MinD monomers of the helix one to one,
the same conversion factor � is used in Eq. �1�. The nonpolar
end of the MinDE-polymer falls off the membrane �with a
slower speed than E-elongation� and disassembles. The state
variable Sj

E determines the right hand side of Eq. �1� for the
case of the MinE polymers,

kE�Sj
E�

=�kon
E cE − koff if Sj

E = 1 �E-polymer growing�
− koff if Sj

E = 0 �E-poly. reached pole �ll/r
E = ll/r

D ��
0 if Sj

E = − 1 �no E-polymer� .
	

�5�

B. Switching between states

We consider a stochastic description of switching between
the three possible discrete states of the state variables Sl/r

D/E

where the probability of switching depends on the cytosolic
concentrations of MinD/E. To capture the cooperative nature
of the initiation of a polymer �e.g., �30,31��, we assume that
the instantaneous rates of nucleation of the two Min poly-
mers are proportional to a power of the respective cytosolic
concentrations: �l/r

nuc�t�=knuccD
nnuc�t� and �l/r

cap�t�=kcapcE
ncap�t�.

nnuc and ncap are the cooperativities for the nucleation and the
capping events, respectively �we refer to the nucleation of an
E-polymer as capping�. A D-polymer starts growing out of
an empty nucleation site with probability pnuc�t�=�nuc�t�dt
between times t and t+dt and a growing D-polymer gets
capped �i.e., an E-polymer nucleates at its tip� with probabil-
ity pcap�t�=�cap�t�dt during that time interval. One of the
results of this paper is the derivation of analytical expres-
sions for the probability distributions when these switches
happen.

As a simplified model, we first consider the limit in which
the cooperativities go to infinity. More specifically, we define
the nucleation probability as �l/r

nuc�t�=knuc� �cD�t� /cD,th�nnuc. In
the limit nnuc→�, the stochastic switching becomes deter-
ministic with the nucleation event occurring as soon as cD
reaches the nucleation threshold cD,th. Capping is treated
similarly. Note that this deterministic limit of our model is
fundamentally different from the deterministic model of
Drew et al. �20� in that Drew et al. consider the mean-field
behavior of a population of filaments that switch between
growing and shrinking states at average rates. In our model,
individual filaments switch when concentration thresholds
are surpassed. The difference between these two models is
that the mean-field model fails to admit oscillations without
further biochemical assumptions �length-dependent growth
speed�, whereas the individual-filament model has an oscil-
latory solution over a large range of parameter values.

C. Model summary

Equations �1�–�5� together with the above-mentioned
switching dynamics of the discrete state variables Sl/r

D/E rep-
resent a hybrid dynamical system �29�. In the rest of this
article, we analyze this system and present both analytical as
well as numerical results that can be interpreted with regard
to experimentally obtainable data.

A single MinD-polymer “life span” includes nucleation,
growth, capping �nucleation of the MinE polymer�, and dis-
assembly as described for the deterministic case in Table I.

The two poles can undergo alternating events of this type,
which then constitutes an oscillatory solution. Such an oscil-
latory solution progresses in the following manner �Fig. 1�. A
MinD polymer capped �at time t1

c� by a MinE polymer dis-
assembles at one pole while the nucleation site at the other
pole is either occupied by a disassembling MinDE polymer
or remains empty. As the MinE polymer disassembles at the
tip, it maintains a steady length by growing at its other end
�tread milling�. Throughout this process, cytosolic MinD
concentration increases thereby increasing the probability of
MinD-polymer nucleation at the empty pole but cytosolic
MinE concentration remains low. Once nucleation occurs �at
time t2

n�, the nascent polymer grows toward midcell, deplet-
ing the cytosolic MinD pool. Because of the ordering of
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critical concentrations for nucleation and elongation, the ex-
isting MinE polymer elongates in preference to nucleation of
a new MinE polymer capping the nascent MinD polymer.
When the original MinD polymer reaches the same length as
the steady-state-treadmilling MinE length, treadmilling is no
longer possible and the cytosolic MinE concentration begins
to rise. This raises the probability of capping the nascent
MinD polymer �at time t2

c�. After capping, the system is back
to the state we began describing but with the poles reversed.
The first MinDE polymer completely disappears at time t1

d.
For a specific subclass of the described oscillatory solu-

tion we are able to derive an analytical description for rel-
evant probability distributions. This subclass we call regular
oscillations and it is defined by t1

c � t2
n� t2

c � t1
d. A section of it

is shown in Fig. 1. This definition essentially means that the
growing phase �Sl/r

D =1� of one polymer falls completely
within the shrinking phase of the other �Sr/l

D =0�.
Table II gives an overview and numerical values for the

parameters we used in this model. Most of them are taken in
ranges reported in the experimental literature. Some are ad-
justed to values that lead to reasonable results of the model.

III. RESULTS

A hybrid dynamical system must be solved piecewise and
care must be taken at points of discontinuity which, in this
case, occur each time a polymer switches state. Within the
appropriate parameter ranges and for a regular oscillation �as
defined above�, we need only consider the progression
through three of the six possible combinations of discrete
states of �Sl

D,Sr
D� which occur in the sequence �0,−1�

→ �0,1�→ �0,0� during one half-period. The evolution of the
continuous variable, for any given discrete state, requires a
solution for disassembly and assembly of polymers. The so-
lution of Eq. �1� for a shrinking D-polymer �Sl/r

D =0� is

ll/r
D �t� = ll/r

D �tl/r
c � − �koff�t − tl/r

c � , �6�

where tl/r
c is the time of the most recent capping of the left or

right D-polymer, respectively.
The solution of Eq. �1� for a growing D-polymer is de-

pendent on the dynamic cytosolic concentration. During
regular oscillations, a growing D-polymer only appears

TABLE I. The series of states a MinD polymer on one pole goes through during one “life span” and the
according switches of the discrete state variables SD/E.

Deterministic switching condition SD SE

�1� MinD polymer nucleates �nucleation event� cD�t�	cD,th −1→1

�2� MinE polymer nucleates �capping event� cE�t�	cE,th 1→0 −1→1

�3� MinE polymer reaches cell wall lE= lD 1→0

�4� MinDE polymer reaches cell wall lD=0 0→−1 0→−1

TABLE II. List of parameters used throughout this paper. The concentrations cD,to and cE,to are consistent
with values used in other modeling papers and are supported by experiment �32�. The rates governing
polymer growth and decay are estimated from �33�. L and r are typical values seen in experiments and the
other parameters are chosen such that the model produces reasonable results. A detailed discussion of the
numerical values of some of the parameters can be found in �22�.

Parameter Value Unit Description

d 2.5 nm
Increase in polymer length by addition of a single

monomer �see footnote �36�� �9�
� 1.4 rad Pitch of the helical polymer �10�
cD,to 4 �M Total MinD monomer concentration

cE,to 1.5 �M Total MinE monomer concentration

koff 80 s−1 Depolymerization rate of the MinDE polymer

kon
D 150 ��M s�−1 Polymerisation rate of MinD on the membrane

kon
E 320 ��M s�−1 Polymerization rate of MinE on the MinD polymer

cD,th 2.5 �M Threshold conc. for the nucleation of a D-polymer

cE,th 1.25 �M Threshold conc. for the nucleation of a E-polymer

L 3 �m Length of cell

r 0.5 �m Radius of cell

knuc 0.015 s−1 �M−nnuc Rate constant of nucleation

kcap 0.15 s−1 �M−ncap Rate constant of capping

nnuc /ncap 3–6 Cooperativity of nucleation/capping
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while the other D-polymer is disassembling �i.e., discrete
state �Sl/r

D ,Sr/l
D �= �0,1��. Assuming the polymer on the right is

decaying, the cytosolic MinD concentration follows cD�t�
=cD,to− �

�V �ll
D�t�+ lr

D�tr
c�−�koff�t− tr

c��. Substituting this into
Eq. �1� and solving the resulting equation with the initial
condition ll

D�tl
n�=0 �tl

n is the time at which the left polymer
nucleates�, one obtains

ll
D�t� =

�V

�

cD,to −

koff

kon
D � − lr

D�tr
c� + �koff�t − tr

c�

− ��V

�

cD,to −

koff

kon
D � − lr

D�tr
c� + �koff�tl

n − tr
c�


exp�−
�kon

D

V
�t − tl

n� . �7�

Similar solutions can be found for the dynamics of the
E-polymers. However, for the analytical treatment in this ar-
ticle, we restrict ourselves to the limit of fast E-ring forma-
tion: we assume that an E-polymer attains its steady-state
length right after its nucleation �i.e., after capping of the
D-polymer�. Equating the rate of polymer decay at the me-
dial end of the MinDE polymer with the growth rate of the
MinE polymer gives the steady state E-polymer length lE,ss

= �V
� �cE,to−

koff

kon
E �. With this simplification, the model reduces to

a hybrid dynamical system with two continuous �ll/r
D � and two

discrete �Sl/r
D � variables. It is important to note that we make

use of this approximation only for obtaining analytical re-
sults. In the numerical simulations we always model the full
system with explicit E-polymer dynamics. For the rest of this
article, we will drop the “D” superscript and denote the
length of the D-polymer by l.

A. Solution of the deterministic model

As a basis for further discussions we briefly present the
solution to the simplest version of the model described in the
preceding section and previously addressed by Cytrynbaum
and Marshall �22�. We consider the case of deterministic
switching �see Sec. II B� and fast E-ring formation. The
length of the MinD polymer at capping �the amplitude of the
oscillation� on one side can be expressed as a function of the
capping length at the preceding capping on the other side:
li+1
c = f�li

c� �cf. Fig. 1�. Thus, the problem of finding a periodic
solution to the hybrid system is reduced to finding a fixed
point of a one-dimensional map. Only in this simple version
of the model such a one-dimensional map can be found be-
cause only then the state of the system is completely deter-
mined by the length of only one of the polymers.

The calculation and the equations for the map are given in
Appendix A. In Fig. 2 the map is plotted for varying total
concentrations of MinD and MinE. The intersection of the
map with li+1

c = li
c shows three fixed points which in terms of

the hybrid system correspond to:
�1� A stable cytosolic solution: there are no polymers �lc

=0� and all the Min proteins are in the cytosol as monomers.
�2� An unstable oscillation �the map intersects the identity

line with a slope larger than one�.

�3� Stable �slope is equal to zero� oscillations with con-
stant amplitude �given in Eq. �A3��.

Depending on the initial conditions �li�t=0��, the system
converges to one of the two stable states, i.e., each parameter
set that allows for an oscillatory solution also includes a
solution where no polymer exists �the cytosolic solution�.

As can be seen from Fig. 2, the region of initial conditions
that lead to a stable oscillatory solution is biggest when cD,to
is large and cE,to is close to cE,th. If cD,to is too small or cE,to
is too high, the map does not intersect with the identity line
anymore and only the cytosolic solution remains. This cor-
responds qualitatively to the condition for the existence of
oscillations as derived in �22� for a simplified version of the
model.

In the stochastic version of the model, low probability
switching events can, under certain circumstances, lead to a
transition between episodes of oscillations �with relatively
constant amplitude� and almost purely cytosolic states. We
will investigate this in the following sections and will refer
to Fig. 2 as the limiting case of infinite cooperativity.
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FIG. 2. The dynamics of the deterministic version of the sim-
plest model �infinitely fast E-ring formation� depicted in form of a
discrete map. It displays the length of the MinD polymer at capping
relative to the cell length L as a function of this length at the pre-
vious capping, i.e., the amplitude of the oscillation �see Appendix A
for the equations�. For intuitive analysis of the map, the identity line
is added. Except for cD,to and cE,to, standard parameters from Table
II were used.
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B. Probability distributions for experimentally measurable
quantities

More realistic than the deterministic-threshold limit for
nucleation and capping of the MinD polymer is stochastic
switching that models the random nature of the underlying
chemical reactions. From now on, we will use the stochastic
rules for switching between the different states of polymers
as introduced in Sec. II B. In this section, we will character-
ize the changes such a stochastic switching rule introduces to
the system. We will focus on two measures to characterize
the robustness of the oscillatory solution of the stochastic
model: the distribution of oscillation amplitudes and periods
and the possibility of skipping beats. Both of these measures
should be easy to obtain from experiments.

As long as the system undergoes regular oscillations, con-
ditional probability distributions can be derived for the times
at which nucleation and capping occur. Suppose the polymer
on the right disappears at time td �Fig. 1� and, at that mo-
ment, the polymer on the left is shrinking and has length ld.
Given this, we denote the probability that a new polymer
nucleates on the right at time t by Pnuc�t � ld�. Thus,
Pnuc�t � ld�dt is the probability that nucleation on the right side
happens between t and t+dt where t	 td. Similarly, if tn is
the time of nucleation on the right and the polymer on the
left is still shrinking and has length ln, then Pcap�t � ln�dt de-
scribes the probability for the capping of the growing poly-
mer to happen between t and t+dt after nucleation �t	 tn�.
Analytical expressions for these two probability distributions
are computed in Appendixes B and C and plotted in Fig. 9.

Using the two conditional probability distributions for
nucleation and capping, analytical expressions for the steady
state probability distribution of polymer lengths at capping
and other relevant quantities can be derived. Similar to the
description of the deterministic system in terms of a map
�Sec. III A�, we derive an integral relationship that maps the
probability distribution for the polymer length ln �Fig. 1�
onto a new probability distribution of the same length half a
period later. The derivation of this map P�li

n�=F�P�li−1
n �� and

the expression for the map itself �Eq. �D6�� is presented in
Appendix D. The expression for the operator F that relates
two consecutive probability distributions involves compli-
cated integrals and no general closed expression can be
found. However, through numerical integration, an approxi-
mation to the steady state probability distribution can be
computed iteratively. Typically, three or four iterates of the
map F �Eq. �D6�� are adequate for convergence with reason-
able accuracy. Only in the case of regular oscillations can the
two stochastic processes, nucleation and capping, be sepa-
rated and the probabilistic map �Eq. �D6�� be derived. Cru-
cial for obtaining regular oscillations are high cooperativities
in both capping and nucleation.

In the following, we present probability distributions for
the amplitude and period of the oscillations obtained from
numerical simulations �39�. We compare these results to ana-
lytical results that we obtain by iterating the probabilistic
map.

1. Distribution of oscillation amplitude and dependence
on cooperativities

Figure 3 shows the results of long simulation runs of the
full MinD/E polymer model with stochastic switching. Plot-
ted is the distribution of MinD-polymer lengths at capping
�the amplitude of the oscillation� and the time between con-
secutive capping events on the same side �the period�.

In experimental studies �both qualitative and quantitative
�32��, large deviations in the oscillation amplitude and period
are seldomly reported. For our model to reproduce this nar-
row distribution, high cooperativities in both nucleation and
capping are crucial. Figure 3 shows that our model is espe-
cially sensitive to the cooperativity in capping: nnuc=3 still
leads to a fairly narrow distribution, whereas both curves for
ncap=3 have big contributions at unusually short capping
lengths.

In Fig. 3 we also show the analytical results from the
numerical iteration of the probabilistic map �Eq. �D6��� for
the case of high capping cooperativity. Figures 4�a� and 4�b�
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FIG. 3. �Color online� Numerically obtained distributions for oscillation amplitude �polymer lengths at capping, left panel� and periods
�time between consecutive cappings on the same side, right panel� with varying cooperativity of nucleation �MinD� and capping. Standard
parameters as of Table II were used. Also shown are the analytical results for the two data sets with ncap=6 �lines�. The remaining analytical
results �for the distribution in lc� are shown in Figs. 4�a� and 4�b�. For the analytical results in lc, the probabilistic map �Eq. �D6�� was applied
three consecutive times, starting with a uniform distribution. This steady state distribution in ln was then transformed into a distribution in
lc by applying Eq. �D7�.
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show a comparison of the simulation results and the analyti-
cal result for the case of low capping cooperativity.

The plots confirm the applicability of our analytical solu-
tion as discussed above. For regular oscillations, the analyti-
cal result agrees well with the results from simulations.
When cooperativities decrease, the increased probability at
small polymer lengths is not accounted for by the analytical
result. These are the events that are too far away from the
stable oscillation point in Fig. 2 and violate the regular os-
cillation assumption needed for the calculations in Appendix
D. Since both the numerical and the analytical distributions
are normalized, the latter one shows higher values in the
region corresponding to regular oscillations. The broader
capping probability distribution in the case of lower ncap �cf.
also Fig. 9�b�� can lead to capping at short polymer lengths,
which eventually can lead to a transition to a purely cytosolic
state �see Sec. III C�.

2. Distribution of oscillation periods and dependence on total
concentrations

Another quantity that can be easily obtained from experi-
ment is the period of the oscillations. In Fig. 5, we plot the
probability distributions of the period T for different total
concentrations of MinD and MinE as obtained from simula-
tions.

At higher concentrations of MinD �cD,to�3.75 �M� and
intermediate concentrations of MinE �cE,to�1.5 �M�, the

distributions are sharply peaked around a single value of T
�Fig. 5�a��. This parameter regime leads to regular oscilla-
tions. The amplitude of the oscillations �and therefore the
period� decreases monotonically with cD,to, reflected in the
leftward shift of the peak in Fig. 5�a�, consistent with the
analogous feature in the deterministic version of the model
�Fig. 2�. The closer the amplitude comes to the unstable fixed
point in Fig. 2, the more likely a D-polymer will be capped
at a small length. This early capping at one pole leads to an
earlier rise in MinE so that the subsequent capping event of
the other pole occurs earlier as well. This positive feedback
can drive the cell into the predominantly cytosolic state
which appears in the stochastic version of the model as a
second peak close to T=0 �Fig. 5�a�, cD,to=3.25 �M�.

A similar distribution is obtained if the total MinE con-
centration is chosen too high �shown in Fig. 5�b�, cE,to
=1.6 �M� with capping of the D-polymers occurring quite
early. For low concentrations of MinE, the instantaneous
capping rate is reduced and capping of the D-polymer can
occur late �cf. also Fig. 9�b��. In extreme cases �cE,to
=0.8 �M� the D-polymer can reach maximum length lmax
�Eq. �4��. Accordingly, the distribution of periods is shifted
towards higher T and tails out slowly.

Using the steady state probability distribution for ln, an
analytical integral expression for the probability distribution
of the period T can be derived for the case of regular oscil-
lations �see Appendix E�. In Figs. 3�b�, 4�c�, 4�d�, and 5, we
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FIG. 4. Comparison of the analytical result �line� with simulations �points—same data as in Figs. 3�a� and 5�b��. �a� nnuc=6, ncap=3; �b�
nnuc=3, ncap=3; �c� cD,to=4�M, cE,to=0.8�M; �d� cD,to=4�M, cE,to=1.6�M.
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FIG. 5. �Color online� Distributions of oscillation period T for different total concentrations cD,to �left panel� and cE,to �right panel�. The
data were obtained from simulations where the time between two consecutive cappings on the same side is considered to be T �ignoring the
dynamics on the other side�. Both cooperativities �for nucleation and capping� are 6, cE,to=1.5 �M �left panel�, and cD,to=4 �M �right
panel�. Also shown are the analytical results �lines� for all �left panel� and the two intermediate concentrations �right panel�. These were
obtained by applying the probabilistic map �Eq. �D6�� three consecutive times, starting with a uniform distribution. The resulting steady state
distribution in ln was then transformed into a distribution in the period T by applying Eqs. �E1� and �E2�. The remaining analytical results
are shown in Figs. 4�c� and 4�d�.
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show the result of this calculation and compare to the simu-
lation data. Since the analytical description only contains the
regular oscillations, it fails to produce the peaks at short
periods �cD,to=3.25 �M in Figs. 5�a� and 4�d��. Also, low
total concentrations of MinE �cE,to�1.2 �M� lead to an ir-
regular oscillation regime by violating the scheme shown in
Fig. 1 in that capping of a new polymer is likely to occur
after complete disassembly of the existing polymer at the
other pole �through ti

c	 ti−1
d �. Accordingly, the analytical so-

lution fails to give a good approximation �Fig. 4�c��.
To illustrate the range of validity of our analytical calcu-

lation, we compare the means of the numerically and analyti-
cally obtained probability distributions in Fig. 6. The devia-
tions in mean period reiterate that the analytic expression is
valid provided MinD concentration is high and MinE con-
centration is intermediate, ensuring regular oscillations. For
small cD,to, the analytical result is always an overestimate of
the numerical result, since the analytical treatment does not
capture the second peak in the distribution at short T �cD,to
=3.25 �M in Fig. 5�a��. The same overestimate results for
high cE,to �Fig. 4�d��, whereas for low cE,to, the analytical
calculation provides an underestimate of the period. Here,
the long tail of the numerically obtained distributions is not
covered �Fig. 4�c��.

Our results as shown in Fig. 6 agree qualitatively with
experiments. Overexpression of MinD has been shown to

increase the oscillation period �4� and overexpression of
MinE is known to disrupt the normal division placement
�34�, probably due to destroying the oscillatory pattern

�which corresponds to our numerical solution of T̄�0 s for
high MinE concentration�. In the deterministic version of the
model, this corresponds to the deterministic map not inter-
secting with the identity line anymore �Fig. 2�b��.

3. Beat skipping

Stochastic switching �nucleation and capping� can also
lead to occasional skipping of beats, another property that is
easily quantified experimentally. Regular oscillations are
characterized by the asynchronous and alternating growth
and disassembly of a polymer at each of the two poles of the
cell. A skipped beat is defined as a deviation from regular
oscillations in which alternation fails and a polymer reap-
pears on the same pole before the appearance of a polymer
on the opposite pole. As a criterion for our numerical analy-
sis, we count the number of cases where two consecutive
cappings of MinD polymers occur on the same side of the
cell. The fraction of these cases with respect to all cappings
is shown in Fig. 7. The figure shows numerically obtained
data for different cooperativities of nucleation and capping.

As a skipped beat is one way of deviating from regular
oscillations, the results in Fig. 7 recapitulate the observations
described earlier in the context of Figs. 3, 5, and 6. The high
fraction of irregular capping events for low total MinD con-
centrations as well as for high total MinE concentration cor-
respond to the second peak in the probability distributions of
periods in Fig. 5 at short T. If the capping cooperativity is
relatively low, there will always be a significant fraction of
skipped beats, which corresponds to the nonzero tails of the
distributions at short lengths for ncap=3 in Fig. 3. For
our standard parameter set nnuc=6 , ncap=6 , cD,to
=4 �M, cE,to=1.5 �M and for a range of concentrations
around it, the fraction of skipped beats is well below the 1%
figure. The strong deviation from our analytical result when
cE,to is very small �Fig. 4�c�� is a violation of the regular
oscillation pattern that does not lead to skipped beats, i.e.,
even in this extreme case the alternating appearance of a
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FIG. 7. �Color online� Numerical result for the regularity of the oscillations. Plotted is the fraction of skipped beats �see text� depending
on both total concentrations of the Min proteins and cooperativities used for nucleation and capping, respectively. In the left panel, cE,to
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and 103–105 for the high values. The error bars are smaller than the point size and the lines are guides to the eyes.
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polymer on the left and the right side is still conserved.

C. Bistability and stochastic transitions

As derived in Sec. III A, the deterministic system is
bistable for a large range of parameters. Under certain con-
ditions, stochastic nucleation and capping of polymers can
lead to transitions between the two stable states: oscillatory
episodes lasting for tens of periods and the cytosolic state.
Figure 8 shows examples of this behavior for three different
parameter sets. A clear distinction between regular oscilla-
tions and the cytosolic state is only possible for high coop-
erativity. This behavior can be explained qualitatively using
the deterministic map described in Sec. III A.

During regular oscillations, a D-polymer is most likely
capped at a length close to the peak of the respective condi-
tional probability distribution �Fig. 9�b� in Appendix C�. Due
to the stochasticity of the capping process, there is a small
probability of the D-polymer being capped before it reaches
normal extension �40�. For high cooperativities, the deter-
ministic map in Fig. 2 retains some validity and one can
think of the capping events in the stochastic model as being
a blurred version of the deterministic map. Rare early and
late capping events correspond to events at the edge of the
blurred region about each fixed point and can result in a
transition from relatively stable oscillations to a state that is
mostly cytosolic and back again. Since the events allowing
for such transitions lie outside the regular oscillation pattern
�Sec. II C�, the analytical approach in Appendix D does not
provide the right tools to describe this effect. We restrict
ourselves to a qualitative discussion of a limiting case.

In order to get a better understanding of the stochastic
transitions we consider the special case of deterministic
nucleation of D-polymers and stochastic capping �41�. For
high values of ncap, the map in Fig. 2 can be used as a rough
guide for the stochastic transitions. In Appendix F, we adjust
this map to the specific case considered here.

In Fig. 8�d� we show three maps obtained as in Appendix
F: one representing our standard parameter set cE,to
=1.5 �M, kcap=0.15 s−1 �M−6 �cf. Table II� and the two
parameter sets used in Figs. 8�a� and 8�b� �with cD,th
=2.5 �M�. One can think of the stochastic system as pro-
ducing a cloud of points in this map around the stable steady

states. A transition occurs if an extreme capping event takes
the system from a neighborhood of the pretransition fixed
point over the unstable steady state into a neighborhood of
the other fixed point. For our standard parameter set, due to
the large distance between stable and unstable fixed points,
this is unlikely to happen. The system will stay in the vicinity
of one of the fixed points with probability close to one. When
the total E-concentration is increased �Fig. 8�a��, the map is
shifted to the right and the distance an extreme capping event
has to cover in order for a transition to occur, decreases. The
same is valid for an increase in the capping parameter kcap as
observed for Fig. 8�b�. The map for this case is slightly
shifted to the left compared to the former case which leads to
a reduced transition rate. The main parameter controlling the
extension of the cloud of points is the capping cooperativity
ncap. When it decreases, the cloud becomes larger, rendering
the map interpretation less meaningful �cf. Fig. 3�. More
transitions occur and the states are not as well defined any-
more �Fig. 8�c��.

IV. DISCUSSION

The mechanisms underlying the Min oscillations in E.
coli are still subject to much debate among modelers since
none of the models proposed so far capture all the properties
and all the phenotypes displayed in wild-type and mutant
cells �see �22� for a discussion�. The most obvious qualitative
features of the observed dynamics are explained in many
models which means that being able to distinguish between
these models will rely on careful quantitative characteriza-
tion of both the models and the experimental data. The re-
sults presented here are a step in this direction.

We generalized a recently published model to allow for
more realistic comparison with data by introducing and ana-
lyzing stochasticity. From a mathematical viewpoint, this
model provides an example of a stochastic hybrid dynamic
system, whose solution can be found analytically in the case
of regular oscillations. Probability distributions for easily
measured quantities are provided, making the model testable.
Comparing our results to experimental data already available
in the literature, the main findings of this paper are as fol-
lows.
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FIG. 8. �Color online� Episodes of oscillatory dynamics alternating with the cytosolic state. Plotted is the position �along the cell long
axis x� of the two D-polymer tips over time. Note that, typically, the duration of one period in the oscillatory state is around T�100 s. The
map shown in �d� is used for a qualitative explanation in the text. Note, that contrary to our discussion in the text, the time series presented
in �a�–�c� were obtained from the full stochastic model �nucleation �nnuc=6� and capping stochastic�. �a� ncap=6 , cE,to=1.7�M, kcap

=0.l5s−1�M−6; �b� ncap=6 , cE,to=1.5�M, kcap=0.5s−1 �M−6; �c� ncap=3 , cE,to=1.5�M, kcap=0.4s−1 �M−3. The remaining parameters are as
of Table II.
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High cooperativity in the nucleation of the Min-polymers
�at least a power of 3 for the MinD and 6 for MinE� are
important. Lower cooperativities allow too many events that
are inconsistent with observations. Reported Hill coefficients
for the nucleation of MinD on a lipid membrane are around
2 �30�. The model is relatively stable to changes in MinD
concentration. MinD concentrations greater than 3.5 �M en-
sure regular oscillations. MinE concentration, on the other
hand, is more finely constrained and must fall between 1.2
and 1.6 �M.

Our results offer an explanation for the variability in the
presence of oscillations observed in experiments. A signifi-
cant fraction of cells usually do not show oscillations in ex-
periments or go from an oscillatory state into a cytosolic
state during the course of observation �e.g., �6��. Our model
suggests an explanation for this in the form of bistability of
an oscillating state and a purely cytosolic state. The model of
Fange and Elf �18� also reports bistability, whereas the mod-
els of Howard et al. �15� and Meacci et al. �13� demonstrate
qualitatively distinct solutions �cytosolic or oscillating� as a
function of parameters but not bistability. Transitions be-
tween the two states will be a challenge to observe experi-
mentally. Evidence for a transition in each direction would
be necessary, requiring long observation times. Photobleach-
ing in the fluorescence microscopy studies limits the latter
and other factors might influence the existence and quality of
the observed oscillations �see, e.g., �6��.

In a recent experimental study, Downing et al. �24� ac-
tively controlled the MinD dynamics in E. coli by changing
cationic concentrations in the surrounding medium. They
were able to stop, distort, and restart the oscillations. Based
on the bistability and stochastic transitions described here,
we speculate that the ion concentration has an influence on
the assembly dynamics of the MinE-polymer. For example,
if increased ion concentration increases kcap, the system
might be driven into a regime where a stochastic transition
into the cytosolic state becomes more likely. On the other
hand, decreasing kcap can lead to a freeze or halt of the os-
cillations with most of the MinD localized on one side of the
cell.

Most other models �21,13,23� produce a similar depen-
dence of the oscillation period on the total Min concentra-
tions and a few �18,17� report on the variability of the period
or, as in our case, the full probability distribution �23�.

The biggest difference between the reaction-diffusion-
type models and the polymer model described here is that in
the polymer model the spatial pattern of the Min oscillations
is prescribed in the form of possible nucleation sites of MinD
in the membrane. This assumption becomes most important
when trying to model the striped Min phenotypes observed
in filamentous cells �6�. There is an ongoing debate in the
experimental literature about the existence and possible na-
ture of sites to which MinD binds preferentially. Recent work
�25� has shown that specific anionic phospholipids colocalize
with MinD at the poles and septum. An important as yet
unanswered question is which of these two determines the
localization of the other or if there is some other factor up-
stream of both.

APPENDIX A: THE DETERMINISTIC VERSION AS A
ONE-DIMENSIONAL MAP

In its simplest version �deterministic switching and fast
E-ring formation, cf. beginning of Sec. III�, our model allows
for a fully analytical solution in terms of a discrete map. We
choose to display the maximal length of the MinD polymer
as a function of the temporally previous maximal length on
the other side of the cell: li+1

c = f�li
c� �cf. Fig. 1�.

To derive the map, we consider the following case: at time
t=0, the DE-polymer on the left side �l� is decaying �Sl

D�0�
=0� and the D-polymer on the right side �r� is growing.
Without loss of generality, we choose t=0 such that the DE-
polymer on the left just reached the length ll�0�= �V

� �cE,to
−cE,th�, which causes the cytosolic E-concentration to grow
above cE,th. This causes the D-polymer on the right side to be
capped: tr

c=0 and therefore its state to be switched: Sr
D:1

→0. We assume that the D-polymer on the right had a length
lr�0�= lr

c at the time point of capping. For a short period of
time, now both polymers are decaying: ll/r�t�= ll/r�0�−�kofft.
At time tl

d= 1
�koff

ll�0�, the left nucleation site becomes free for
a new nucleation.

We now have to distinguish three different cases:
�1� The newly nucleated polymer on the left side gets

capped immediately if cE�tl
d�	cE,th. This is the case if

lr
c � 2

�V

�
�cE,to − cE,th� . �A1�

Under this condition, the cytosolic MinE concentration
will never drop below cE,th. Any nucleating MinD polymer
will therefore be capped immediately, which evolves into the
cytosolic state �i.e., no polymer: ll

c=0�.
�2� For slightly larger lr

c, nucleation on the left side will
happen right after the first polymer �left� completely disas-
sembled �ll=0; tl

n= tl
d�, as long as cD�tl

d�	cD,th. Using tl
c

= 1
�koff

�lr
c− �V

� �cE,to−cE,th�� in Eq. �7� leads to an expression for
the length of the D-polymer at the next capping,

ll
c =

�V

�
�cD,to −

koff

kon
D − cE,to + cE,th

− 
cD,to −
koff

kon
D + cE,to − cE,th −

�

�V
lr
c�


exp
−
�kon

D

�koffV

lr

c − 2
�V

�
�cE,to − cE,th��� . �A2�

�3� If lr
c is even bigger �lr

c
�V
� �cD,th+cE,to−cE,th��, such

that cD�tl
d��cD,th, the new polymer on the left will nucleate

at tl
n= 1

�koff
�lr

c− �V
� �cD,to−cD,th��. Its capping will then happen

at the stable amplitude:

ll
c =

�V

�
�cD,to −

koff

kon
D − cE,to + cE,th − 
cD,th −

koff

kon
D �


exp
−
kon

D

koff
�cD,to − cD,th − cE,to + cE,th�� . �A3�

This is the amplitude of the stable oscillation and all con-
secutive cappings will happen at this amplitude, too.
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The piecewise map derived above is displayed for various
MinD and MinE concentrations in Fig. 2.

APPENDIX B: CONDITIONAL PROBABILITY
DISTRIBUTION FUNCTION FOR NUCLEATION TIMES

(REGULAR OSCILLATION)

In the stochastic version of our model, the probability
distribution function of the times one side of the cell is free
of polymer can be derived analytically if the system is oscil-
lating regularly �see Sec. II C�. This distribution function is
conditional on the length ld of the polymer present on the
opposite side of the cell at the time point where the nucle-
ation site becomes polymer free �td in Fig. 1�. As described
in Sec. II B, we assume the instantaneous probability for
nucleation on a free nucleation site at time t to be �nuc�t�
=knuccD

nnuc�t�.
The probability for nucleation between times t and t+dt is

the probability of no nucleation until t and then nucleating
within �dt: Pnuc�t�dt= �1− P�tn� t���nuc�t�dt. P�tn� t� is the
cumulative distribution function. Without loss of generality,
we assume tl

d=0 �i.e., the polymer on the left side just de-
cayed completely at time t=0� and obtain

Pnuc�t� = �nuc�t�exp�− �
0

t

�nuc�t��dt� . �B1�

The cytosolic D concentration follows cD�t�=cD,to− �

�V �lr
d

−�kofft� for t� tr
d �on the other side�. For t tr

d, there would
only be cytosolic MinD �cD�t�=cD,to�. We do not consider
this case, since it is outside the regular oscillation pattern.

Putting cD�t� from above into Eq. �B1�, one obtains

Pnuc�Tf�ld� = knuc
cD,to −
�

�V
ld +

�

V
koffT

f�nnuc


exp�−
1

n + 1

knucV

�koff


cD,to −

�

�V
ld

+
�

V
koffT

f�nnuc+1

− 
cD,to −
�

�V
ld�nnuc+1� .

�B2�

Figure 9 shows typical shapes of this probability distribu-
tion function �for a given ld� for high cooperativity in nucle-
ation and different concentrations of MinD. From Eq. �B2�, it
is obvious that the dependence of the probability distribution
on ld is �up to a scaling factor� the same as on cD,to.

APPENDIX C: CONDITIONAL PROBABILITY
DISTRIBUTION FUNCTION FOR CAPPING TIMES

(REGULAR OSCILLATION)

Equivalently to the preceding appendix, one can derive
an expression for the conditional probability distribution
function for the time of growth of a polymer. In Sec. II B
we introduced the instantaneous probability for capping of a
growing polymer at a time t: ��t�=kcapcE

ncap�t�.
We only consider the approximative case of fast E-ring

formation �see Sec. III�. The MinDE-polymer on the right
side is assumed to be decaying and has length lr

n at time t
=0 �cf. Fig. 1�. Without loss of generality we assume that
the D-polymer on the left side nucleates and starts growing
at time tl

n=0. We now have to distinguish three cases during
the decay of the polymer on the right side �td,E is the time
when the growing tip of the E-polymer reaches the cell
wall�:

�1� First, the concentration of MinE monomers in the cy-

tosol is constant �lr
E= lE,ss⇒cE=cE,0�

koff

kon
E �.

�2� For tr
d,E� t� tr

d, cE grows linearly: cE�t�=cE,0

+ �

Vkoff�t− tr
d,E�.

�3� After tr
d, cE is constant again: cE=cE,to.

Putting these into the equivalent of Eq. �B1� gives the
conditional probability distribution function for the time, at
which the growing D polymer on the left side gets capped
and switches states �Eq. �C1�—we generalize to Tc and drop

the side dependence; cE,0=
koff

kon
E ; A= �

Vkoff�.
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FIG. 9. �Color online� Typical probability distributions for the time free of polymer �Pnuc�Tf � ld�, left panel� and the duration of growth
�Pcap�Tc � ln�, right panel�. A number of curves are plotted for different total concentrations of MinD or MinE, respectively. The analytical
expressions are given in Eq. �B2� for the left panel and Eq. �C1� for the right one. Standard parameters as of Table II are used and the
probability distributions are given for the conditions ld=1.5 �m and ln=1.5 �m, respectively. The cooperativity for nucleation or capping
is 6. For comparison, the dotted lines show the probability distribution functions for a reduced cooperativity nnuc/cap=3. Note the broader
distributions in this case as well as the noticeable tail towards shorter Tc in the right panel for the dotted line.
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Pcap�Tc�ln�

=�
kcapcE,0

ncap exp�− kcapcE,0
ncapTc� 0 � Tc � td,E

kcap�cE,0 + A�Tc − td,E��ncap exp
− kcapcE,0
ncaptd,E −

kcap

A�ncap + 1�
��cE,0 + A�Tc − td,E��ncap+1 − cE,0

ncap+1�� td,E � Tc � td

kcapcE,to
ncap exp
− kcapcE,0

ncaptd,E −
kcap

A�ncap + 1�
��cE,0 + A�td − td,E��ncap+1 − cE,0

ncap+1� − kcapcE,to
ncap�Tc − td�� Tc  td. 	

�C1�

Here, td= 1
�koff

ln and td,E= 1
�koff

�ln− lE,ss� with lE,ss

= �V
� �cE,to−

koff

kon
E �. The condition on ln only enters through the

dependencies in td,E and td.
Figure 9 shows typical probability distribution functions

for capping �for a given ln� for high capping cooperativity
and different MinE concentrations. The dependence of the
probability distribution on ln is �up to a scaling factor� the
same as on cE,to for the important first and second part of the
nonsmooth Eq. �C1�.

APPENDIX D: A MAP FOR THE PROBABILITY
DISTRIBUTION

Combining the two conditional probability distributions
computed in Appendixes B and C, one can derive a map for
the probability distribution of the amplitude during regular
oscillations. Here, we derive this map in the following form:
Pn�li

n�=F�Pn�li−1
n ��, i.e., the probability distribution of

lengths at nucleation �on the opposite side� can be derived as
a function of the distribution at the previous nucleation �on
this side—for notation see Fig. 1�.

We start with computing a relation between the two prob-
ability distributions Pn�li

n� and Pd�li
d�,

Pn�li
n� = �

li
n

lmax

p�li
n�li

d�Pd�li
d�dli

d. �D1�

The conditional probability distribution p�li
n � li

d� can be ob-
tained from Eq. �B2� by replacing Tf = 1

�koff
�li

d− li
n� and multi-

plying with 1
�koff

�to ensure correct normalization under the
variable transformation�. For the limits of the integration one
has to consider that li

n will always be smaller than li
d �see Fig.

1�. The upper limit is the maximally possible length of a
D-polymer �i.e., all MinD is bound in one polymer �Eq. �4���.

With that, we obtain

Pn�li
n� = knuc
cD,to −

�

�V
li
n�nnuc


exp�−
1

nnuc + 1

Vknuc

�koff

cD,to −

�

�V
li
n�nnuc+1


�
li
n

lmax

exp�−
1

nnuc + 1

Vknuc

�koff

cD,to

−
�

�V
li
d�nnuc+1Pd�li

d�dli
d. �D2�

In a similar fashion, Pd�li
d� can be expressed as a function

of Pn�li−1
n �,

Pd�li
d� = �

lmin
n

lmax

p�li
d�li−1

n �Pn�li−1
n �dli−1

n . �D3�

The conditional probability distribution in Eq. �D3� can be
obtained from Eq. �C1� when replacing Tc with the solution
of the deterministic relation that connects li

d and Ti
c �Eqs. �6�

and �7��,

li
d = − 2li−1

n + 2�koffTi
c +

�V

�

cD,to −

koff

kon
D �

− ��V

�

cD,to −

koff

kon
D � − li−1

n exp
−
�kon

D

V
Ti

c� . �D4�

Solving this equation for Ti
c gives a function Ti

c=g�li−1
n , li

d�
that involves a LambertW function and can therefore not be
expressed in terms of elementary functions. For correct nor-
malization, the new conditional probability distribution also

has to be multiplied by the derivative
�g�li−1

n ,li
d�

�li
d .

The integration limits are the minimal and maximal val-
ues of li−1

n , such that the order of events in Fig. 1 �i.e., regular
oscillations� is still fulfilled for a given li

d. The upper limit
turns out to be lmax, whereas the lower limit can be found as
the solution to the polymer growth equation with T i

c=T i−1
n .

One finds

lmin
n = −

�V

�kon
D �koff LambertW�−

1

�Vkoff


�− �VcD,tokon
D + �Vkoff + �kon

D li
d�


exp
 cD,tokon
D − koff

koff
� − cD,tokon

D + koff� . �D5�

Putting Eqs. �D1� and �D3� together, one obtains a map
from one probability distribution into the next one, half a
period later,

PETER BOROWSKI AND ERIC N. CYTRYNBAUM PHYSICAL REVIEW E 80, 041916 �2009�

041916-12



Pn�li
n� = �

li
n

lmax 1

�koff
Pnuc
Tf = �li

d − li
n

�koff
�li

d�

�

lmin
n

lmax �g�li−1
n ,li

d�
�li

d Pcap�Tc = g�li−1
n ,li

d��li−1
n �


Pn�li−1
n �dli−1

n dli
d. �D6�

The integrals can be computed numerically �42� and by
iterating Eq. �D6�, a steady state probability distribution can
be obtained. A typical starting distribution for the iteration
would be a delta distribution or a uniform distribution and
for typical parameter values, a steady state distribution is
reached after 3 to 5 iterations.

This approach is valid as long as the vast majority of
events fall into the scheme depicted in Fig. 1, i.e., as long as
ti
d	 ti+1

c and ti
d	 ti+1

n �regular oscillations—see Sec. II C�.
A more relevant quantity than ln, the length of a polymer

at the time of nucleation on the other side, is the capping
length lc, i.e., the amplitude of the oscillation. To obtain the
probability distribution for this length, one needs to perform
another integration,

Pc�lc� = �
lmin
n

lmax
n

p�lc�ln�Pn�ln�dln. �D7�

The conditional probability distribution can be obtained from
Eq. �C1�, when replacing Tc with the appropriate function of
lc and ln that can be derived from a similar relation as Eq.
�D4�. We obtain

p�lc�ln� =
�Tc�lc,ln�

�lc Pcap�Tc = Tc�lc,ln��ln� . �D8�

The lower limit of the integration is the same as in the pre-
vious integration �Eq. �D5��. For the upper limit one needs to
find li−1

n such that li
d=0. This can be found by solving Eq.

�D4� with Tc= 1
�koff

�ln− lc� for ln. In case this solution is larger
than lmax, lmax �Eq. �4�� is the upper limit.

APPENDIX E: PROBABILITY DISTRIBUTION FUNCTION
FOR THE PERIOD IN THE OSCILLATORY STATE

Using the iterative approach described in the previous ap-
pendix, the steady state probability distribution function for
the lengths of D-polymers at a given time point during regu-
lar oscillations can be found. Starting from this distribution,
we will compute the probability distribution function for the
period of the oscillations in this appendix.

From Fig. 1, half a period Th �the time between two con-
secutive nucleations on opposing sides� is found to be Th

=Tn+Tf and therefore Ph�Th�=�p�Tf =Th−Tn �Tn�p�Tn�dTn.

Tn can be replaced by Tn= 1
�koff

ln and an additional probability
distribution p�ld � ln� can be introduced in order to obtain an
equation involving only distributions that have already been
calculated,

Ph�Th� = �
0

lmax
n �

0

lmax
d

Pnuc
Tf = Th −
1

�koff
ln�ld�


p�ld�ln�dldPn�ln�dln. �E1�

Pnuc�Tf � ld� is given in Eq. �B2�, how to obtain p�ld � ln� is
described in the preceding appendix and a steady state dis-
tribution for Pn�ln� is also derived there �iterating Eq. �D6��.
The upper limits of the two integrals are the smaller of
��koffT

h , lmax� for lmax
n and lmax

d is the equivalent of Eq. �D5�,
lmax
d = �V

� �cD,to−
koff

kon
D �− � �V

� �cD,to−
koff

kon
D �− ln�exp�−

�kon
D

�koffV
ln�.

For the probability distribution function of the period T
=2Th, one more integration is needed

PT�T� = �
0

T

Ph�Th = Th��Ph�Th = T − Th��dTh�. �E2�

APPENDIX F: A LIMITING DETERMINISTIC MAP FOR
THE CASE OF HIGH COOPERATIVITY

For the case of deterministic nucleation and stochastic
switching, we want to use the deterministic map as shown in
Fig. 2 as a rough guideline for the dynamics of the system. In
order to find this underlying map, we need to find a replace-
ment for the parameter cE,th in the analytical expression of
the map �Eqs. �A1�–�A3�� since the MinE nucleation thresh-
old does not have a meaning if we assume stochastic cap-
ping. A natural choice is the E-concentration at the median of
the capping cumulative distribution function Fcap�t�. In the
case of deterministic switching this is a step function in cE
with the step at cE,th. For high ncap, Fcap�t� it is a steep sig-
moidal curve. For the vast majority of cases �kcap�

ln�2�
cE,0

ncaptd,E

and kcap	 ln�2��cE,0
ncaptd,E+

cE,to
ncap+1−cE,0

ncap+1

A�ncap+1� �−1�, the median capping
time tM lies within td,E� tM � td. With the integration of Eq.
�C1� �and ln= �V

� �cD,to−cD,th�� one finds the median time to be
tM = td,E+ 1

A �−cE,0+ �cE,0
ncap+1−

A�ncap+1�
kcap

�kcapcE,0
ncaptd,E

− ln�2���1/�ncap+1��, which then leads to

cE�tM� = �cE,0
�ncap+1� −

Ancap + 1

kcap


�kcapcE,0
ncaptd,E − ln�2���1/�ncap+1�

. �F1�

We use this E-concentration as a replacement of cE,th in Eqs.
�A1�–�A3� and plot the resulting maps in Fig. 8�d�.

PREDICTIONS FROM A STOCHASTIC POLYMER MODEL… PHYSICAL REVIEW E 80, 041916 �2009�

041916-13



�1� X. C. Yu and W. Margolin, Mol. Microbiol. 32, 315 �1999�.
�2� P. A. J. de Boer, R. E. Crossley, A. R. Hand, and L. I. Roth-

field, EMBO J. 10, 4371 �1991�.
�3� Z. Hu and J. Lutkenhaus, Mol. Cell 7, 1337 �2001�.
�4� D. M. Raskin and P. A. J. de Boer, J. Bacteriol. 181, 6419

�1999�.
�5� Z. Hu, A. Mukherjee, S. Pichoff, and J. Lutkenhaus, Proc.

Natl. Acad. Sci. U.S.A. 96, 14819 �1999�.
�6� D. M. Raskin and P. A. de Boer, Proc. Natl. Acad. Sci. U.S.A.

96, 4971 �1999�.
�7� J. Lutkenhaus, Adv. Exp. Med. Biol. 641, 49 �2009�.
�8� Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci.

U.S.A. 99, 6761 �2002�.
�9� K. Suefuji, R. Valluzzi, and D. RayChaudhuri, Proc. Natl.

Acad. Sci. U.S.A. 99, 16776 �2002�.
�10� Y.-L. Shih, T. Le, and L. Rothfield, Proc. Natl. Acad. Sci.

U.S.A. 100, 7865 �2003�.
�11� J. Szeto, N. F. Eng, S. Acharya, M. D. Rigden, and J.-A. R.

Dillon, Res. Microbiol. 156, 17 �2005�.
�12� H. Meinhardt and P. A. de Boer, Proc. Natl. Acad. Sci. U.S.A.

98, 14202 �2001�.
�13� G. Meacci and K. Kruse, Phys. Biol. 2, 89 �2005�.
�14� K. C. Huang, Y. Meir, and N. S. Wingreen, Proc. Natl. Acad.

Sci. U.S.A. 100, 12724 �2003�.
�15� M. Howard, A. D. Rutenberg, and S. de Vet, Phys. Rev. Lett.

87, 278102 �2001�.
�16� M. Howard and A. D. Rutenberg, Phys. Rev. Lett. 90, 128102

�2003�.
�17� R. Kerr, H. Levine, T. Sejnowski, and W. Rappel, Proc. Natl.

Acad. Sci. U.S.A. 103, 347 �2006�.
�18� D. Fange and J. Elf, PLoS Comput. Biol. 2, e80 �2006�.
�19� K. Kruse, Biophys. J. 82, 618 �2002�.
�20� D. A. Drew, M. J. Osborn, and L. I. Rothfield, Proc. Natl.

Acad. Sci. U.S.A. 102, 6114 �2005�.
�21� N. Pavin, H. C. Paljetak, and V. Krstic, Phys. Rev. E 73,

021904 �2006�.
�22� E. N. Cytrynbaum and B. D. L. Marshall, Biophys. J. 93, 1134

�2007�.
�23� F. Tostevin and M. Howard, Phys. Biol. 3, 1 �2006�.
�24� B. P. B. Downing, A. D. Rutenberg, A. Touhami, and M. Jeri-

cho, PLoS ONE 4, e7285 �2009�.
�25� E. Mileykovskaya, A. C. Ryan, X. Mo, C. C. Lin, K. I. Khalaf,

W. Dowhan, and T. A. Garrett, J. Biol. Chem. 284, 2990
�2009�.

�26� S. Mazor, T. Regev, E. Mileykovskaya, W. Margolin, W.
Dowhan, and I. Fishov, Biochim. Biophys. Acta 1778, 2505
�2008�.

�27� A. Touhami, M. Jericho, and A. D. Rutenberg, J. Bacteriol.
188, 7661 �2006�.

�28� G. Meacci, J. Ries, E. Fischer-Friedrich, N. Kahya, P.
Schwille, and K. Kruse, Phys. Biol. 3, 255 �2006�.

�29� A. R. Champneys and M. di Bernardo, Scholarpedia 3, 4041

�2008�.
�30� E. Mileykovskaya, I. Fishov, X. Fu, B. Corbin, W. Margolin,

and W. Dowhan, J. Biol. Chem. 278, 22193 �2003�.
�31� F. Oosawa and S. Asakura, Thermodynamics of the Polymer-

ization of Protein (Molecular Biology) �Academic Press Inc.,
New York, 1975�.

�32� Y.-L. Shih, X. Fu, G. F. King, T. Le, and L. Rothfield, EMBO
J. 21, 3347 �2002�.

�33� C. Hale, H. Meinhardt, and P. de Boer, EMBO J. 20, 1563
�2001�.

�34� P. de Boer, R. Crossley, and L. Rothfield, Cell 56, 641 �1989�.
�35� J. Derr, J. T. Hopper, A. Sain, and A. D. Rutenberg, Phys. Rev.

E 80, 011922 �2009�.
�36� To simplify the notation, we use the term monomer throughout

this paper, even though the original model �22� as well as
experiments suggests a polymer formed of dimers.

�37� Derr et al. �35� recently examined an alternate model for MinE
“ring” formation that does not require MinE polymerization.
Although testing it in the full MinD polymer model is still
required, this might remove the requirement of assuming MinE
polymerization.

�38� For high total MinD concentrations, lmax can come close to L,
i.e., the D-polymer would cover the whole cell from pole to
pole. To avoid further assumptions on what happens if a poly-
mer hits the opposite cell wall, we restrict ourselves here to
total MinD concentrations that make these events very unlikely
or impossible. With the parameters from Table II, this means
we consider maximal total MinD concentrations of around
5 �M. In the simulations, the polymer simply stops growing
in the unlikely case that it reaches the opposite cell wall.

�39� A simple Euler-forward routine �time step 10−4 s� was used to
solve the differential equations. To reduce error in averages
and to get smooth distributions, typically, simulations were run
for 106–108 s of simulated time �i.e., roughly 2
104–2

106 capping events�.

�40� If the capping occurs while the E-polymer on the opposite side
still has its steady state length lE,ss, our model predicts a sec-
ond E-ring of length zero. According to our model equations,
the E-polymer could nucleate �stochastically� but the determin-
istic growth equation does not support an elongation because
cE is at the critical concentration for elongation due to the
presence of the other E-ring. A more detailed model would
incorporate stochastic effects in the growth and shrinking of
the E- �and DE-� polymer.

�41� In the opposite case �stochastic nucleation and deterministic
capping�, the transitions are not observed. In this case, if the
regular oscillation pattern is violated and a D-polymer nucle-
ates very late, cE	cE,th, and the D-polymer as well as all fol-
lowing D-polymers will be capped right away.

�42� To numerically compute the integrals, 5000 discrete mesh
points were used over the interval 0 . . .L. After each integra-
tion, the distribution is normalized.
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